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12-chord phrases, either of which can repeat without dis-
turbing anything (Fig. 6 and 7).
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Fig. 6. Loop of 12 chords belonging to Forte 4-22
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& .. ..���� ���� ����# ����# ����## ����### ����#### ����#### ����### ����### ����# ����#

& .. ..����### ����### ����## ����# ���� ���� ���� ���� ����# ����## ����### ����###

& œœœœœ œœœœœb œœœœœbbb œœœœœ œœœœœbbb œœœœœbbb œœœœœbb œœœœœ œœœœœbb œœœœœ
 

Fig. 7. The other loop with the other 
12 chords from Forte 4-22

Note that the chords always alternate between the original 
(0,2,4,7) form and the inverted (0,3,5,7) form, and you can 
hear a sort of back and forth as the music goes on. (e inver-
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use all 12 notes before repeating something, and his tech-
nique was in some ways much freer than that of the Second 
Viennese School. But he was rigorous in his own way, and 
sometimes his music is quite subtle.

He didn’t always work with sets of six notes. A nice example 
of four-note sets can be found in the Zwölftonspiel (February 
1, 1946) (Fig. 1).

Fig. 1. First twelve bars of Zwölftonspiel 
(February 1, 1946), mov. 1 

© 1979 by Ludwig Doblinger (Bernhard Herzmansky) KG, Wien.

Each four-note set is presented in one bar, or two at the end 
of each system, and shares three notes from the previous set, 
adding one new note. (e process continues for 14 measures, 
at the end of which the succession of 12 new notes has cov-
ered the whole chromatic. It is hard to see this organization 
in the score itself, so I made the drawing of Fig. 2.
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Fig. 2. First twelve bars of Zwölftonspiel (February 1, 1946), 

mov. 1,  beginning with the [Cਣ, Dਣ, G, A] chord at three o’clock.

(e 12-tone row of new notes forms the outer circle, the 
other three notes of each chord are shown on the inner cir-
cles, and the lines show how notes remain from one measure 
to the other. If all the notes were used the same number of 
times, as in an ideal atonal music, we would ,nd each note 
four times, but here we ,nd F seven times and E only twice. 
(e important thing though, which is without exception, is 
that with each new measure the composer retains three notes, 
drops one, and adds another, and this is something one would 
never ,nd in serial music. I was struck to ,nd things like this 
in Hauer, because in my own work I have also been very in-
terested in counting the number of notes that are the same or 
di-erent from one chord to another, and I didn’t know that 
someone else was doing the same thing 50 years earlier.
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CONTINUATION

* Form a scale by alternating minor thirds and minor seconds. 
How long must you continue in order to have all 12 pitch classes 
of the chromatic scale?

* Form another scale where the notes progress minor third, minor 
third, major second, minor third, minor third, major second, etc. 
How many octaves must you go before returning to the original 
pitch class?

* Form a Slonimskian scale of two or more octaves following 
the preferences of Euler, with the close intervals high and the 
large intervals low. Fix the second note a sixth higher than the 
,rst note and make each subsequent interval narrower than the 
previous one.

** Form a Slonimskian scale of two octaves where there is only 
one di-erence between the notes of the two octaves. Do you 
think there already exists somewhere a piece of music that fol-
lows such a scale?

*** How many scales of nine notes are possible using only major 
seconds and minor thirds with no octaves? Use my Mathematica® 
program if you have the software to do it:
ct = 0;
Do [ scale = { 0,
i,
i + j,
i + j + k,
i + j + k + l,
i + j + k + l + m,
i + j + k + l + m + n,
i + j + k + l + m + n + o,
i + j + k + l + m + n + o + p};
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I ,rst became aware of Schillinger many years ago in a library 
in Colorado when I ran across the !e Schillinger System of 
Musical Composition, a much longer book, published posthu-
mously by Carl Fischer in 1946, and still in print. It is the 
longest and best known Schillinger book, and I particularly 
remember learning about isorhythm from reading it, a les-
son I never forgot and one that was most useful for me in 
later years. My university professors later on knew about iso-
rhythm, but they mostly considered it a historical phenome-
non found occasionally in medieval manuscripts. For Schil-
linger, however, isorhythmic structures could be constructed 
in many new and di-erent ways and could be most useful for 
composers today.

Schillinger’s explanation of isorhythm is concise and sim-
ple and consists mostly of the following example, which I 
quote directly from the book. (e melodic cycle, technically 
the color, is shown here in Fig. 1, followed by the rhythmic 
cycle in Fig. 2, technically the talea, followed by the six bars 
of music that result by letting the seven notes of the rhythm 
turn around in combination with the six notes of the melodic 
cycle (Fig. 3).

Fig. 1. Color                                  Fig. 2. Talea

Fig. 3. Color and talea rotating together

& œ Jœ œ œ œ jœ œ œ jœ œ œ œ jœ œ œ Jœ œ œ œ Jœ œ
& œ Jœ œ œ œ jœ œ œ jœ œ œ œ Jœ œ œ jœ œ œ œ Jœ œ

÷ œ Jœ Jœ Jœ Jœ Jœ œ& œ œ œ œ œ œ
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Fig. 4. Families of chords (“pentads”) given by Schillinger 
 at the end of his Kaleidophone

(ose ,rst four chords are the four ways that one can con-
struct a ,ve-note chord if the intervals between adjacent 
notes consist of three major seconds and one fourth. (e sec-
ond family, the subsequent six chords, are constructed with 
two major seconds and two minor thirds as adjacent intervals, 
and the third family has adjacent intervals of two major sec-
onds, one minor third and one major third. (e families get 
larger and larger because, as you know if you have studied the 
theory of combinations a bit, there are four ways of ordering 
(a,a,a,b), six ways of ordering (a,a,b,b), and 12 ways of or-
dering (a,a,b,c)2. Of course, in all three families, the top and 
bottom voices never move, because the sum of the intervals 
is always the same.

Finding that Schillinger was working with combinations of 
adjacent intervals was another surprise for me, because, with-
out ever having seen this book, and working half a century 
after it was published, I also often calculated groups of chords 
according to the intervals found between adjacent notes.

Classifying families in this way is rather di-erent from 
Forte’s classi,cations. (e ,rst and seventh chords in Schil-

2.  See Math Addendum.

& œœœœœ# œœœœœ œœœœœ œœœœœ
& œœœœœb œœœœœbb œœœœœbbbb œœœœœbb œœœœœb œœœœœbbb
& œœœœœ œœœœœ œœœœœb œœœœœ## œœœœœ# œœœœœ# œœœœœ œœœœœb œœœœœ œœœœœb œœœœœ## œœœœœ#



90

O t h e r  H a r m o n y

linger’s third list, where adjacent intervals are 2, 2, 3, and 4, 
are members of the set Forte 5-27 (0,1,3,5,8), but to make a 
comparison I wrote out the 10 chords of the Forte 5-27 set 
that have C as the bass note (Fig. 5).

Fig. 5. From the Forte 5-27 set

Which of these two families of ,ve-note chords form the 
most tightly knit family? I have the feeling that Schillinger’s 
family is the tightest, but perhaps mostly just because they all 
have B as the top note. All the chords in the Forte set, on the 
other hand, have a kind of modern jazz quality, which is not 
true of the Schillinger chords. Both sets of chords are rather 
close families in any case.

(e question of chord families takes me back to my studies 
with Morton Feldman3, who sometimes also spoke of “fami-
lies”, listening to chords that seemed to belong together and 
asking why some chord that appeared to be very similar just 
didn’t sound related to the others. If it would be possible 
to show these two “families” to Feldman, he would probably 
play them over about 20 times, listen very carefully, then say 
something like, “Well, I’d eliminate the third and ,fth chord 
and add this one”, and play some other chord that didn’t 
have the same intervals at all, but which somehow had a very 
similar sound. In that way he would make his own Feldman 
family.

3.  Two programs are devoted to Morton Feldman in the Music by my 
Friends series [mbmf.editions75.com].

& œœœœœ œœœœœb œœœœœbbb œœœœœ œœœœœbbb œœœœœbbb œœœœœbb œœœœœ œœœœœbb œœœœœ
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CONTINUATION

* Form ,ve-note chords using this scale from Table I of Schil-
linger’s Kaleidophone:

* Calculate all the three-note chords that can be derived from the 
following seven-note scale that Schillinger de,nes in this way on 
page 49 of his Kaleidophone:

** Consider what might be the best sequence for these chords.

** How many four-note chords can be constructed on this scale 
with C as the lowest note and Gਣ as the highest?

** Construct a chord family where the intervals between adjacent 
notes are 1, 1, and 4. How many members are in this family?

*** De,ne all the ,ve-note chords possible with adjacent intervals 
of 2, 3, 3, and 4 semitones. Use my Mathematica® program if you 
have the software. To change the four intervals between the ,ve 
notes, give “int” (for “intervals”) other numbers to permute.
int = Permutations[{2, 3, 3, 4}];
Do[scale = {0, Part[int[[i]], 1],
Part[int[[i]], 1] +
Part[int[[i]], 2],
Part[int[[i]], 1] +
Part[int[[i]], 2] +
Part[int[[i]], 3],
Part[int[[i]], 1] +
Part[int[[i]], 2] +

& œ œ# œ œb œ œ œ# œ

& œ œ# œ œ œ# œ# œ1 + 1 + 2 + 2 + 2 + 3
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Fig. 3. More chords derived from Messiaen’s Mode 2

Since Mode 3 uses a nine-note scale with three transposi-
tions, one runs through three rather di-erent types of chords 
before coming back to a transposition of the ,rst one (Fig. 4).

Fig. 4. Chords derived from Messiaen’s Mode 3  
[Messiaen 1944, ex. 329]

Much the same can be said of Messiaen’s four-voice example 
in Mode 4. Since Mode 4 has only eight notes, one forms a 
sequence of four chords before repeating. With the voices 
beginning as shown here, they all rise a half step from the 
,rst chord to the second, so there is no change. (e third and 
fourth chords are rather di-erent, but still, the sequence is 
homogeneous because everything comes from the same scale.

& wwww# wwww### wwwwb wwww#b

& wwww#b wwww# wwwwbb wwwwbb

& œ œ œb œn œ# œ œ# œ# œ
&
?

www
www###

www##
wwwb

wwwbb
www##

www#
www#
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& œ œb œn œ œ# œ œb œ
&
?

ww
ww#

ww##
ww#

ww
ww

wwb
ww#

Fig. 5. Chords derived from Messiaen’s Mode 4  
[Messiaen 1944, ex. 345]

For Mode 6 we can write an example in eight voices, so the 
entire scale is present in each chord. (at means that each 
chord is essentially the same, and the sequence is not moving 
in cycles as in the other cases. Maybe it is not moving at all.

& œ œ œ œ œ# œ# œ# œ
&
?

wwww#
wwww##

wwww#
wwww##

wwww#
wwww#

wwww##
wwww#

wwww##
wwww#

Fig. 6. Chords derived from Messiaen’s Mode 6 

Messiaen counts seven modes of limited transposition, but 
Guerino Mazzola, who counts possibilities in a more rig-
orous mathematical way, ,nds a couple of others2 [Mazzola, 
2002]. (e one below, for example, has four transpositions 
and is really about the same as mode 3, except that it has only 
2.   Mazzola counts 10 scales of limited transposition instead of 7:  

“Es gibt 10 Skalen, von denen Messiaen aus uner,ndlichen Gründen die 
Skalen (c, cis, dis, ,s, g a) sowie deren Umkehr und (c, cis e, f, gis, a) nicht 
aufzählt.” [Geometrie der Töne, p. 98].
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six notes instead of nine. It is clearly a mode of limited trans-
position though, and Messiaen could have added it to his list. 
In any case the resulting sequence of four-note chords cer-
tainly sounds like Messiaen even though it consists uniquely 
of major seventh chords, Forte 4-20 (0,1,5,8).

& œ œb œ œ œ# œ
& wwwwbb wwwwb# wwww wwwwbb

Fig. 7. Chords derived from a Mazzola mode

One might also take the eight notes of Mode 4, substitute 
E for D and F, substitute Bᅈ for Aᅈ�and B, and have a new 
six-note mode of limited transposition, as I did here. (ere 
are now six transpositions possible, but the result still sounds 
like Messiaen, it seems to me.

& œ œ# œ œ# œ œb
&
?

wwwb#
ww#

www#
wwb

wwwbb
ww#

wwwb
ww#

Fig. 8. More modes with limited transpositions

Volume VII of the Traité also discusses “renversements”, “ac-
cords tournants”, and other harmonic techniques, but the 
important thing here is to observe how Messiaen’s search for 
Other harmony is similar to that of other theorists of his 
time. Messiaen’s manner of deriving chords from scales is not 
so di-erent from Hauer’s manner of deriving chords from 
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family of chords that have Forte 3-7 equality, and it is com-
plete as well. If I stopped before the 24th chord, or if I re-
peated some chords and not others, the logic wouldn’t have 
been so nice, and I really believe that we can perceive com-
pleteness when we hear a sequence like this, at least on some 
subconscious level.

But so far we are only talking about one particular pitch class 
set, Forte 3-7. How can we form other families of harmonies, 
and how can we be sure when the family is complete? Usual-
ly deciding whether a musical sequence is complete is a sub-
jective evaluation, but when we have ,nite lists of things, this 
decision can be perfectly objective. Of course, the problem 
is easier with short lists. If we want all the possible chords 
of three notes that can be formed with a scale of six notes, 
everything will be over after 6!/(3!·3!) = 20 chords. But we 
can easily make longer lists. Or we can put together all the 
four-note chords possible with Messiaen’s mode 2, or all the 
three-note chords that can be extracted from one of Hauer’s 
six-note tropes, or all the ,ve-note chords with C as the low-
est note and the G an octave and a half higher as the highest 
note. Or all the three-note chords one can construct on a 
whole tone scale two octaves long. How many are there in all 
these cases? If you don’t know how to deduce the answers to 
little problems like this, you can just count the possibilities 
in a reasonable amount of time, or try to ,nd a mathematical 
way of doing it more quickly6. But this is enough generalities 
about the essentials of families, equality and completeness. 
It’s better to go on to speci,c types of families one by one in 
subsequent chapters.

6.  (e Math Addendum at the back of this book gives tools to solve 
some of these problems.
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As we might have expected, the possibilities are all evenly 
distributed, so we get a symmetrical bell-like curve. All 220 
three-note chords are there, all 15 of Forte’s three-note cat-
egories, all mixed up. (e largest categories are the chords 
with sums of 15, 16, 17, and 18, with 15 chords in each cat-
egory, and the graph is perfectly symmetrical, ending with 
only two chords having sums of 28, one with a sum of 29, 
and one [9, 10, 11] with a sum of 30. Let’s just look at the 15 
chords with sums of 16 and see what they have in common 
and how they might ,t together musically.

{{4, 5, 7}, {3, 6, 7}, {3, 5, 8}, 
 {2, 6, 8}, {1, 7, 8}, {3, 4, 9}, 
 {2, 5, 9}, {1, 6, 9}, {0, 7, 9}, 
 {2, 4, 10}, {1, 5, 10}, {0, 6, 10}, 
 {2, 3, 11}, {1, 4, 11}, {0, 5, 11}}

We can probably understand this best if we make a graph 
connecting the chords by minimal di-erences. Since they all 
have the same sum, that means that to get from one chord to 
another, one voice has to ascend a notch and another has to 
descend a notch. To ,gure this out and ,nd the smoothest 
progression, it’s best to make a graph, but in this case I could 
,gure it out without going to the trouble, and here is the 
progression I came up with (Fig. 2). Can you hear that it is 
all hovering at one altitude?

& ˙˙˙b ˙˙˙b ˙̇̇ ˙̇̇#b ˙˙˙b ˙˙˙# ˙̇̇ ˙˙̇##
& ˙˙˙ ˙˙̇## ˙˙̇## ˙̇̇## ˙̇̇bb ˙˙̇ ˙˙̇bb

Fig. 2. Chords with sums of 16 joined 
by minimal differences

You may or may not like the fact that we have a lot of minor 
triads here. You’ll understand better why when we talk about 
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In the following example the top voice rocks back and forth 
between its two notes at every change, while a second voice 
rocks back and forth every two changes, a third voice rocks 
every four changes, and a fourth voice moves very slowly, 
rocking only once every eight changes. (e sequence here 
begins with all voices in their top positions and ends with all 
voices in their bottom positions, and it’s a complete family 
of 16.

& œœœœ##
œœœœ##

œœœœ##
œœœœ##

œœœœ##
œœœœ##

œœœœ##
œœœœ##

& œœœœ# œœœœ# œœœœ# œœœœ# œœœœ# œœœœ# œœœœ# œœœœ#
Fig. 9. Four voices changing in whole steps

Here is another simple example where voices rise and fall 
by major seconds, and no other explanation is necessary. Of 
course, in this case the music is getting slightly higher, little 
by little, then advancing downward toward a goal, which it 
reaches when it returns to the original chord, and this leads 
us to the next chapter.

Fig. 10. Rising and falling sequence with four voices
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Do[Print[{a, b, c}],
         {c, 3, 6},
         {b, 2, c - 1},
         {a, 1, b - 1}]
 
Formatted output=

[1, 2, 3] 
[1, 2, 4] 
[1, 3, 4] 
[2, 3, 4] 
[1, 2, 5] 
[1, 3, 5] 
[2, 3, 5] 
[1, 4, 5] 
[2, 4, 5] 
[3, 4, 5] 
[1, 2, 6] 
[1, 3, 6] 
[2, 3, 6] 
[1, 4, 6] 
[2, 4, 6] 
[3, 4, 6] 
[1, 5, 6] 
[2, 5, 6] 
[3, 5, 6] 
[4, 5, 6]

 
Fig. 1. A short program in Mathematica™ 

showing a progression of advancing chords

It’s just climbing up through the possibilities of what a math-
ematician would call six-choose-three1, and here is a nice way 
of looking at it graphically. I’ll put it in notes here, and I’ll 
draw it on a six-note scale that can be found in the Slonimsky 
!esaurus [D, Fᅊ, G, B, C, E]2, connecting one chord to the 

1.  See “binomial coe"cient” or “n choose k” in the Math Addendum.
2.  Diatessaron Progression: Equal Division of Five Octaves in Twelve 
Parts in page 109 of [Slonimsky 1947].
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To end this chapter, let’s look at a progression that advances 
downwards, and at the same time we can go back to that list 
I made at the beginning of the chapter about height. I’ll start 
with the eight chords that have sums of 10, then the seven 
that have sums of 9, the ,ve that have sums of 8, and so on 
down to the chords with sums of 4 and 3, and why not, we 
can drop voices and end with the sums of 2, 1, and 0, which 
should make a real cadence. Al niente it’s called sometimes.

 #1 [0,1,2] sum=3;   #2 [0,1,3} sum=4;   #3 [0,2,3] sum=5; 

 #4 [0,1,4] sum=5;   #5 [1,2,3] sum=6;   #6 [0,2,4] sum=6; 

 #7 [0,1,5] sum=6;   #8 [1,2,4] sum=7;   #9 [0,3,4] sum=7; 

#10 [0,2,5] sum=7;  #11 [0,1,6] sum=7;  #12 [1,3,4] sum=8; 

#13 [1,2,5] sum=8;  #14 [0,3,5] sum=8;  #15 [0,2,6] sum=8; 

#16 [0,1,7] sum=8;  #17 {2,3,4] sum=9;  #18 [1,3,5] sum=9; 

#19 [0,4,5] sum=9;  #20 [1,2,6] sum=9;  #21 [0,3,6] sum=9; 

#22 [0,2,7] sum=9;  #23 [0,1,8] sum=9;  #24 [2,3,5] sum=10; 

#25 [1,4,5] sum=10; #26 [1,3,6] sum=10; #27 [0,4,6] sum=10; 

#28 [1,2,7] sum=10; #29 [0,3,7] sum=10; #30 [0,2,8] sum=10; 

#31 [0,1,9] sum=10;

& ˙˙˙b ˙˙˙b ˙̇̇b ˙˙˙# ˙˙˙### ˙˙̇# ˙˙̇# ˙˙˙bU ˙˙˙bb ˙˙˙ ˙˙˙##
& ˙˙˙## ˙˙̇ ˙˙˙## ˙ ˙˙ nb

U ˙˙˙b ˙˙˙# ˙˙̇b ˙˙˙# ˙˙˙##
U ˙˙˙bb ˙˙˙

& ˙˙˙# ˙˙˙#
U ˙˙˙b ˙˙˙ ˙˙˙b#

U ˙˙˙b ˙˙˙bU ˙˙˙bb
U

˙ ˙˙ nb
U

˙˙
U

˙˙b
U

˙
U

Fig. 6. Progression advancing downwards
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(4 3 2 1)1. Since 1 + 2 + 3 + 4 = 10, the distance between the 
lowest and the highest notes is always a minor seventh and 
the outside voices never move. With a little e-ort I found a 
way to do it where each chord has three notes in common 
with the following chord.

& œœœœœ#
[4, 3, 2, 1]

œœœœœb#
[4, 3, 1, 2]

œœœœœb#
[4, 1, 3, 2]

œœœœœ#
[4, 1, 2, 3]

œœœœœ##
[4, 2, 1, 3]

œœœœœ##
[4, 2, 3, 1]

& œœœœœ#
[2, 4, 3, 1]

œœœœœ#
[2, 4, 1, 3]

œœœœœ
[2, 1, 4, 3]

œœœœœb
[2, 1, 3, 4]

œœœœœb
[2, 3, 1, 4]

œœœœœ
[2, 3, 4, 1]

& œœœœœ
[3, 2, 4, 1]

œœœœœb
[3, 2, 1, 4]

œœœœœbb
[3, 1, 2, 4]

œœœœœbb
[3, 1, 4, 2]

œœœœœb
[3, 4, 1, 2]

œœœœœ
[3, 4, 2, 1]

& œœœœœb
[1, 4, 2, 3]

œœœœœbb
[1, 4, 3, 2]

œœœœœbbb
[1, 3, 4, 2]

œœœœœbbb
[1, 3, 2, 4]

œœœœœbb
[1, 2, 3, 4]

œœœœœb
[1, 2, 4, 3] 

Fig. 1. Chords with the same intervals between adjacent notes

Here’s the same set of permutations in numbers, as comput-
ed with Mathematica™. Notice that, computed in this way, 
sometimes all three of the inner notes change, and some-
times only one or two of them change. (e previous example 
is probably more satisfying to a musician who thinks about 
voice leading, but there is a logic here too:
P := Permutations[1, 2, 3, 4] 
Do[Print[0, Part[p[[i]], 1], 
            Part[p[[i]], 1] + Part[p[[i]], 2], 
            Part[p[[i]], 1] + Part[p[[i]], 2] + 
                                          Part[p[[i]], 3], 
            Part[p[[i]], 1] + Part[p[[i]], 2] + 
                       Part[p[[i]], 3] + Part[p[[i]], 4]],
            i, 1, 24]

1.  (e Math Addendum will try to explain permutations.
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systematic but most e-ective example is Souvenir by László 
Sáry2, a piano piece that can have the e-ect of a lullaby.

Here is another advancing progression of ,ve-note chords, 
where the intervals between adjacent notes must be either 
major thirds or perfect fourths and where the result is anoth-
er way of advancing, higher and higher, little by little. Note 
that since we are just choosing combinations of two things, 
major thirds and perfect fourths, the ,ve staves show one 
chord, then four chords, then six chords, then four chords, 
then one chord, which is a line from Pascal’s triangle3, the 
same numbers you get when you calculate the possibilities of 
heads and tails by throwing a coin four times. Of course, one 
could choose another pair of intervals and have a completely 
di-erent sound, and one could work with chords of six notes 
or seven notes and have a much longer progression, but this 
much already demonstrate the principle.

& 21 �����# U

& 24 �����# �����## �����# �����# U

& 26 �����### �����
## �����

# �����
## �����

# �����
## U

& 24 �����
�����

�����# �����## U

& 21 �����### U

Fig. 4. Five-note chords with major thirds  
and fourths according to Pascal’s triangle

2.  László Sáry (1940–) is a Hungarian composer and pianist. As a ped-
agogue, he has developed the “Creative Music Activities”.
3.  See Math Addendum.
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CONTINUATION

* How many four-note chords can be constructed with C as the 
lowest note and F as the highest? What are the adjacent intervals 
of these chords?

* Pascal ’s Triangle in the Music for 88 used all the chords having 
only major seconds and minor thirds as adjacent intervals. How 
many ,ve-note chords were there, and what did they sound like?

** In the chord (0, 1, 3, 6, 10) the intervals between adjacent 
notes are 1, 2, 3, and 4. How many other ,ve-note chords with 
0 as the lowest note and 10 as the highest note have these four 
adjacent intervals?

* My 360 Chords for orchestra used all the seven-note chords 
where the intervals between adjacent notes were 3, 4, 5, 7, 8, and 
9 semitones. With six adjacent intervals I could have formed 6! 
= 720 possible chords rather than 360, but I eliminated the ones 
with the small intervals in the bass, because the sound was too 
muddy. See the ,rst bar of 360 Chords in the illustration page of 
this chapter.

What was the range of the full chord?

** Construct the six four-note chords where the intervals between 
adjacent notes are 1, 2, and 3 semitones, with the bass note al-
ways 0 and the top note always 6. Is it possible to place these six 
chords in such an order that the order of the adjacent intervals 
will be completely di-erent with each new chord? You will prob-
ably have to draw a graph to be sure.
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** Consider a set of 5-note chords where the intervals between 
adjacent notes are {2, 3, 4|5, 7} i.e. 2, 3, 4 or 5, and 7. How many 
will have a height of 16 and how many will have a range of 17?

** Consider a set of 5-note chords where the intervals between 
adjacent notes are {2, 3, 4, 5 or 6}. Half will have a range of 14, 
and half will have a range of 15. How might they go together in 
such a way that they will sound like a complete family?

*** (e family of ,ve-note chords with {4, 5, 7, 8} as intervals 
between adjacent notes has 24 members. How many will be left 
if we eliminate all those containing an octave?

*** Construct chords of 9 notes, where the multiset of adjacent in-
tervals is {2:3, 3:3, 4:2}. (is notation indicates that the elements 
2 and 3 have a multiplicity of 3 and should be used 3 times, while 
the element 4 has a multiplicity of 2. How many are possible 
with this constraint?
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sums, all equivalent to 2 modulo 3. Below that you see the 
same con,gurations in musical notation (Fig. 7).

0 + 3 + 7 = 10
0 + 3 + 19 = 22
0 + 4 + 9 = 13
0 + 9 + 16 = 25

0 + 4 + 7 = 11
0 + 16 + 19 = 35
0 + 3 + 8 = 11
0 + 9 + 17 = 26

& ���b
[0,3,7]

���b
[0,3,19]

���
[0,4,9]

���
[0,9,16]

���
[0,4,7]

���
[0,16,19]

���bb
[0,3,8]

���
[0,9,17]

Fig. 7. Minor chords (1 mod 3) and major chords (2 mod 3)

Viewed in this way, major and minor triads are not in the 
same category, even though they belong to the same pitch 
class set, and one may ask what kinds of chords are in the 
third category, those whose sums equivalent to 0 modulo 
3. Some of those chords can be found in the sequence that 
we already saw in Fig. 2, where we made a cycle following 
chords from all three categories (Fig. 8).

& ˙˙˙∫b ˙˙˙bb ˙˙˙b ˙˙˙ ˙˙˙ ˙˙̇b ˙˙̇#b ˙̇̇b ˙̇̇ ˙̇̇# ˙̇̇ ˙̇̇ ˙̇̇b ˙̇̇ ˙̇̇#
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

 Fig. 8. Chords equivalent to 0, 1, and 2 modulo 3 

It made sense with three-note chords to consider their sums 
modulo 3, because any three-note chord in any transposition 
will retain its sum modulo three. Similarly with four-note 
chords, it is logical to consider their sums modulo 4. A chord 
with a sum of 11, when transposed, may have a sum of 15 
or 27, but the sum will always be equivalent to 3 modulo 4. 
I have spent a lot of time and used up a lot of music paper 
trying to study the chords equivalent to 0, 1, 2, and 3 mod-
ulo 4 over the years, and I have been particularly interested 
in the chords with sums equivalent to 1 modulo 4, because 
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and that makes the voice leading very awkward, so I decided 
to take another approach. I asked the computer to compute 
all the four-note chords with sums of 20 that had no semi-
tones as adjacent intervals and that could ,t into a single 
octave. I then made graphs to ,gure out how to put them to-
gether with minimal changes, that is, with one voice moving 
up a semitone and another voice moving down a semitone. 
(en I did the same thing with chords having sums of 21, 22, 
and 23, so that I would have a collection of the four di-erent 
families, all made with the same procedure, and this is what 
I found (Fig. 10).

& ����##
0 modulo 4

����## ����## ���� ����bb ����bb ���� ����## ����## ����#### ����##

& ����
1 modulo 4

����# ����# ����### ����bbb ����b ����bbb ����# ����# ����### ����#

& ����
2 modulo 4

����b ����#b ����## ����## ����## ����#### ����## ����b ����

& ����##
3 modulo 4

����# ����b ���� ����bb ����bb ���� ����b ����### ����# ����b ����bbbb
Fig. 10. Families of four-note chords according to their sums 

 modulo 4, connected by minimal differences

It’s probably better if you just listen to those results without 
paying any attention to my own reactions, but when you’re 
ready, I’ll give you my observations in the next paragraphs.

Well, the most obvious thing about the ,rst music, the 0 
modulo 4 chords, is the chords where all four notes are on 
the same whole tone scale. (ere are four of those, but I see 
several minor sevenths too, Forte 4-26 (0,3,5,8), and almost 
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all the chords are palindromes, meaning that the inversions 
are the same as the originals. I don’t think that can happen 
when the sum is equivalent to 1 or 3 mod 4, though I wouldn’t 
know how to prove it3.

(e second phrase, the chords with sums equivalent to 
1 mod 4, is most characterized by the dominant sevenths, 
which account for four of the 11 chords. Several others are 
major triads with an added second degree, and sometimes, as 
with the second and third chords, they are even in the same 
key. (at C dominant seventh, the sixth chord, for exam-
ple, could resolve very nicely to the ,rst chord. Whole tone 
chords can not appear, since the sum of four odd numbers or 
four even numbers will always be 0 or 2 mod 4, and I don’t 
see any palindromes either.

(e third phrase, the chords with sums equivalent to 2 mod 4, 
brings more whole tone chords, but also a diminished sev-
enth, and there at the end, we have another palindromic 
chord, commonly known as a major seventh, which makes 
a traditional cadence. (e very ,rst chord is a palindrome 
too, and I think those palindromes are balanced in a way that 
gives this music, like the 0 mod 4 music, a special equilibrium. 
It feels kind of settled, whereas the chords in the 1 mod 4 
music seem somehow o- center.

Finally, with the fourth phrase, the chords with sums equiv-
alent to 3 mod 4, things seem to be moving again. For me 
those four Tristan chords, chords 3, 6, 8, and 9, set the at-
mosphere, and all the other chords are ones you don’t hear 
very much. If Wagner were still alive, he might well want to 
write his music by calculating chords with sums equivalent to 

3.  Actually I did. See the proof in the Math Addendum.
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ning of homometry in general. Any two chords are homo-
metric if they have exactly the same interval content, and 
this is quite possible with pairs of chords with more than four 
notes. Forte found three di-erent pairs of ,ve-note chords 
with the same intervallic content, but rather than giving you 
all those numbers, I have simply drawn these ,ve-point for-
mations on 12-point circles (Fig. 12). I’ll add the numbers 
that mark the distances, which are rather irregular. (ere are 
10 distances between the pairs of notes, and some intervals 
are more present than others.

Fig. 12. Forte 5-Z12, 5-Z36; Forte 5-Z17, 5-Z37; 
Forte 5-Z18, 5-Z38
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You may think that these chords sound so homogeneous just 
because I kept C and E as the lower notes in all cases, but 
here are some other ,ve-note chords that come from Forte 
5-Z18 and Forte 5-Z38 and they sound pretty similar too 
(Fig. 18).

& ˙̇˙˙˙bb ˙˙˙̇̇#b# ˙˙˙˙˙#b ˙˙̇̇̇b#
Fig. 18. Other chords from the same pair

(ey are kind of squeezed though. (ey will sound better if 
the voices are spread out a bit so that, as Messiaen would 
have said, the “divine light” can shine through (Fig. 19).

& ˙̇˙˙̇b ˙̇˙˙̇b## ˙̇̇˙˙b# ˙˙̇̇̇##
Fig. 19. Same chords spread out

Well, I’m not sure that the “divine light” is shining through, 
but the music certainly sounds better, and still quite homoge-
neous, and don’t forget that this is just the tip of the iceberg. 
Even the world of the all-interval tetrachord remains little 
explored in music, and homometric formations of more than 
four-notes are still virgin territory for composers.
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the blocks together when they have minimal di-erences and 
end up with long chains, or sometimes one single chain, but 
in this solution very few links of that sort are possible. (e 
block (1,4,7,9) has three notes in common with the block 
(4,5,7,9), and 11 other pairs of blocks have three notes in 
common, but no chains are possible. After con,rming this, 
I also asked the computer if there were cases where three 
blocks contained only six notes and what did I ,nd? Eureka! 
Ten such formations! And in each case the three blocks all 
had two notes in common with one another. I won’t write out 
all ten, but here are a few, which I wrote out on a new scale 
about two octaves in range, in order to spread the intervals 
out a bit. I’ve written this music in quarter notes with repeat 
signs, because I often ,nd that when chords are very similar 
it is nice to let them repeat at a faster tempo (Fig. 7). I also 
drew the structure in triangles to see better how the same 
notes interconnect between the chords (Fig. 8).

& .. .. .. .. .. ..œœœœ#
[1, 3, 5, 11]

œœœœ###
[1, 5, 8, 9]

œœœœ##
[3, 8, 9, 11]

œœœœ#
[2, 5, 10, 11]

œœœœ#
[3, 5, 7, 11]

œœœœ
[2, 3, 7, 10]

œœœœ
[1, 7, 10, 12]

œœœœ#
[3, 6, 7, 10]

œœœœ#
[1, 3, 6, 12]

Fig. 7. Sets of three chords containing six notes

Fig. 8. Sets of three chords formed with six notes
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CONTINUATION

* Divide the notes/numbers 1, 2, 3, 4, 5, 6, 7, 8 into subsets of four 
notes forming parallel classes.

** How many ways are there to do this?

** (e fourth and last solution for an (8,4,3) design contains these 
14 blocks. Only two pairs come together to form a parallel class. 
Try to ,nd them.

{{0,1,2,3}, {0,1,4,5},{0,1,6,7}, {0,2,4,6}, {0,2,5,7}, {0,3,4,7}, 
{0,3,5,6}, {1,2,4,7}, {1,2,5,6}, {1,3,4,6}, {1,3,5,7}, {2,3,4,5}, 
{2,3,6,7}, {4,5,6,7}}

*** Make a graph of these 14 blocks when they have two or more 
notes in common. Note that by de,nition every pair occurs in 
three di-erent blocks.

*** Here are the 33 blocks of the Morales and Velarde (12,4,3) 
solution. Below is my program that will divide the 33 blocks 
into 11 parallel classes, but you might want to write your own 
program. 
{{{0, 1, 2, 3},  {0, 1, 4, 5},   {0, 1, 6, 7}},
 {{0, 2, 4, 10}, {0, 2, 5, 11},  {0, 3, 6, 8}},
 {{0, 3, 7, 9},  {1, 2, 7, 8},   {1, 2, 6, 9}},
 {{1, 3, 5, 10}, {1, 3, 4, 11},  {4, 5, 6, 7}},
 {{2, 3, 8, 9},  {2, 3, 10, 11}, {1, 6, 8, 11}},
 {{1, 7, 9, 10}, {1, 4, 9, 10},  {1, 5, 8, 11}},
 {{0, 4, 9, 11}, {0, 5, 8, 10},  {0, 6, 9, 11}},
 {{0, 7, 8, 10}, {8, 9, 10, 11}, {6, 7, 10, 11}},
 {{4, 5, 8, 9},  {3, 5, 7, 9},   {3, 4, 6, 8}},
 {{2, 5, 7, 11}, {2, 4, 6, 10},  {3, 5, 6, 10}},
 {{3, 4, 7, 11}, {2, 4, 7, 8},   {2, 5, 6, 9}}}
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“0 to 11”

12-tone theory has used the group Z/12, identifying the 
notes with the elements:

0 = C, 1 = Cᅊ, …, etc. up to 11 = B

But a number can also mean an interval, e.g., the number 5 
is a perfect ,fth. (e sums of notes or intervals are reduced 
modulo 12, which means that they equal the remainder 
when divided by 12. 
4 + 10 = 2 mod 12 because 14 divided by 12 leaves a re-
mainder of 2. Musically this represents adding 10 semitones 
(a minor seventh) to E (4)  to get D (2).  
In a group the inverse of an element gives zero when added 
to it: 4 + 8 = 0. Very conveniently, this coincides with the 
inverse of an interval. So a minor sixth (8) is the inverse of a 
major third (4).  
A common representation of the elements/notes is a chro-
matic circle with 12 points.

“four-note chords that are palindromes are 0 or 2 modulo 4.” 

A four-note chord is a palindrome if it is equal to its inver-
sion. [0,1,4,5] is an example. And if some chord [a,b,c,d] is 
palindromic then b − a = d − c  
Let’s study now the expression b – a.  
If b – a is even then b – a = 2k. Adding 2·a to both sides we 
get a + b = 2(k+a), therefore a + b is even too. 
If b − a is odd then b − a = 2k+1. Adding 2·a to both sides 
we get a + b = 2(k+a) +1, therefore a + b is odd. 
We have proved that a + b and c + d are both even or both 
odd, and so the total a  + b + c + d must be even. (e sum of 
the chord is thus 0 or 2 mod(4).
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“prime with” or “coprime”

Two integers are said to be coprime if their only common 
divisor is 1. Twelve and ,ve are coprime. Twelve and ten are 
not coprime because 2 is a common divisor of both. 
If a and b are coprime, it can also said that “a is prime with 
b”.

“permutations”

When we talk about reordering the elements of a set, we 
are talking about permutations. If a set has n elements, the 
number of permutations is  
 n! = n × (n-1) × (n-2) × … × 2 × 1. 

(is is could be illustrated with a ,ve elements set {a, b, c, d, 
e}. For the ,rst element of the permutation we can choose 
from a, b, c, d, or e, so we have ,ve options. After that we 
have four elements left to choose from (if you chose ‘a’ you 
can now choose b, c, d, or e). So far we have 5 × 4 partial 
permutations. With 3 elements left, we have three choices, 
with 2 elements remaining, two choices, and we end up 
with the one element left. 
(e whole process gives us 5 × 4 × 3 × 2 × 1 = 5! = 120 per-
mutations.  
When the elements to choose from are repeated, the total 
number of permutations is reduced, because one cannot 
distinguish one repeated element from another. If there are, 
for example, 3 a’s, we have to divide the total number of 
permutations by 3! = 6.
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When we choose k elements from a set of n, regardless of 
the order, we form a combination, which is an unordered 
permutation. To choose the ,rst element of a subset with 
kelements we have n options, after which we have (n-1) 
options, then (n-2) and so forth, down to (k+1).  
(at gives us n × (n-1) × ...  × (k+1) permutations of k 
elements. But we are not interested in the order of the 
elements, so let’s divide by the number of permutations of k 
elements, k!

At the end, the so called binomial coe"cient (n-choose-k) is 
[n×(n-1)×...×(k+1)]/k! 

When we represent these coe<cients in rows, starting with 
n=0 and giving k all the values possible up to n, we obtain 
Pascal’s triangle, after the French mathematician Blaise Pas-
cal, but also studied by others before him in India, China, 
etc:
n=0, k=0                              1
n=1, k=0,1                          1   1
n=2, k=0,1,2                      1   2   1
n=3, etc                        1   3   3   1
n=4                           1   4   6   4   1
n=5                         1   5  10  10   5   1
n=6                       1   6  15  20  15   6   1 

(e “20” in the seventh row is the answer to 6-choose-3.
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A note on notation

(is book uses numbers to represent di-erent things: fac-
tors, pitch classes, actual notes, intervals, elements of a set, 
etc. (us, depending on the context, some numbers inside 
parenthesis may mean a pitch class set or a block-design. 
We distinguish between normal parentheses, curly brackets 
and square brackets with the hope that the meaning is more 
clear. Below we summarize the principal examples of nota-
tion used throughout the book (the ‘ิ means “is identical 
to”):

{2:3, 5, 7} ิ {2, 2, 2, 5, 7} ิ Multiset, i.e. a set where each 
element has a multiplicity.

(0,3,7) ิ the prime form of a pitch class set (pc set), fol-
lowing Allen Forte’s procedures. (0,3,8) and (0,4,7) are in 
the same pitch class set, but not in prime form. Notice that 
there are no spaces after the commas.

[4, 7, 12] ิ a sequence of notes forming a chord with actual 
pitches, measured from middle C = 0. (is notation is used 
for calculating heights with no octave reduction allowed, i.e. 
[4, 7, 12] is not equivalent to [0, 4, 7].

(2 1 4 3) ิ a permutation of an ordered set (1 2 ... 4). No 
commas.

(6,3,2) ิ a block design of 6 elements, divided into sub-
groups of 3, with every pair of elements comes together 2 
times. Again no spaces after the commas.


